Professional astronomy is split into observational and theoretical branches. Observational astronomy is focused on acquiring data from observations of astronomical objects. This data is then analyzed using basic principles of physics. Theoretical astronomy is oriented toward the development of computer or analytical models to describe astronomical objects and phenomena. These two fields complement each other. Theoretical astronomy seeks to explain observational results and observations are used to confirm theoretical results.
Astronomy is one of the few sciences in which amateurs play an active role. This is especially true for the discovery and observation of transient events. Amateur astronomers have helped with many important discoveries, such as finding new comets. (Full article...)
The following are images from various astronomy-related articles on Wikipedia.
Image 1Segment of the astronomical ceiling of Senenmut's Tomb (circa 1479–1458 BC), depicting constellations, protective deities, and twenty-four segmented wheels for the hours of the day and the months of the year (from History of astronomy)
Image 6ALMA is the world's most powerful telescope for studying the Universe at submillimeter and millimeter wavelengths. (from Observational astronomy)
Image 9Places like Paranal Observatory offer crystal clear skies for observing astronomical objects with or without instruments. (from Amateur astronomy)
Image 10Amateur astronomer recording observations of the sun. (from Amateur astronomy)
Image 11Comparison of CMB (Cosmic microwave background) results from satellites COBE, WMAP and Planck documenting a progress in 1989–2013 (from History of astronomy)
Image 17Artist conception of the Big Bang cosmological model, the most widely accepted out of all in physical cosmology (neither time nor size to scale) (from Physical cosmology)
Image 18An example of a gravitational lens found in the DESI Legacy Surveys data. There are four sets of lensed images in DESI-090.9854-35.9683, corresponding to four distinct background galaxies—from the outermost giant red arc to the innermost bright blue arc, arranged in four concentric circles. All of them are gravitationally warped—or lensed—by the orange galaxy at the very center. Dark matter is expected to produce gravitational lensing also. (from Physical cosmology)
Image 24An image of the Cat's Paw Nebula created combining the work of professional and amateur astronomers. The image is the combination of the 2.2-metre MPG/ESO telescope of the La Silla Observatory in Chile and a 0.4-meter amateur telescope. (from Amateur astronomy)
Image 27Portrait of the Flemish astronomer Ferdinand Verbiest who became head of the Mathematical Board and director of the Observatory of the Chinese emperor in 1669 (from Astronomer)
Image 34The inflationary theory as an augmentation to the Big Bang theory was first proposed by Alan Guth of MIT. Inflation solves the 'horizon problem' by making the early universe much more compact than was assumed in the standard model. Given such smaller size, causal contact (i.e., thermal communication) would have been possible among all regions of the early universe. The image was an adaptation from various generic charts depicting the growth of the size of the observable universe, for both the standard model and inflationary model respectively, of the Big Bang theory. (from Physical cosmology)
This is a Featured article, which represents some of the best content on English Wikipedia.
In astronomy, the main sequence is a classification of stars which appear on plots of stellar color versus brightness as a continuous and distinctive band. Stars on this band are known as main-sequence stars or dwarf stars, and positions of stars on and off the band are believed to indicate their physical properties, as well as their progress through several types of star life-cycles. These are the most numerous true stars in the universe and include the Sun. Color-magnitude plots are known as Hertzsprung–Russell diagrams after Ejnar Hertzsprung and Henry Norris Russell.
After condensation and ignition of a star, it generates thermal energy in its dense core region through nuclear fusion of hydrogen into helium. During this stage of the star's lifetime, it is located on the main sequence at a position determined primarily by its mass but also based on its chemical composition and age. The cores of main-sequence stars are in hydrostatic equilibrium, where outward thermal pressure from the hot core is balanced by the inward pressure of gravitational collapse from the overlying layers. The strong dependence of the rate of energy generation on temperature and pressure helps to sustain this balance. Energy generated at the core makes its way to the surface and is radiated away at the photosphere. The energy is carried by either radiation or convection, with the latter occurring in regions with steeper temperature gradients, higher opacity, or both. (Full article...)
26 January 1949 – Hale Telescope, which introduced several innovations to telescope construction and was the world's largest telescope for nearly 30 years, has its first light